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A first-order differential equation of Green’s function, at the origin G(0), for the one-
dimensional lattice is derived by simple recurrence relation. Green’s function at site (m)
is then calculated in terms of G(0). A simple recurrence relation connecting the lattice
Green’s function at the site (m, n) and the first derivative of the lattice Green’s function
at the site (m £ 1,n) is presented for the two-dimensional lattice, a differential equation
of second order in G(0,0) is obtained. By making use of the latter recurrence relation,
lattice Green’s function at an arbitrary site is obtained in closed form. Finally, the phase
shift and scattering cross-section are evaluated analytically and numerically for one- and
two-impurities.
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1. Introduction

The lattice Green’s function (LGF) is a basic function in the study of solid state
physics and condensed matter physics. It appears especially when impure solids are
studied.!”® Today, Green’s function (GF) is one of the most important concepts in
many branches of physics, because many quantities of interest can be expressed in
terms of LGF. The following are some examples:

(i) Statistical model of ferromagnetism such as Ising model,’
(ii) Random walk theory,”
(iii) Diffusion,®
(iv) Heisenberg model,”
(v) Band structure,!%1!

)

(vi

The LGF for several structure lattices has been widely studied by many
authors.!” 2! In a recent work GF, density of states (DOS), phase shift, and scat-
tering cross-sections have been evaluated numerically and analytically for different

Resistance calculation for an infinite network of identical resistors.!2~16

cases, and below are some examples:

(i) General glasser case lattice,?
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(ii) Face centered cubic (FCC) lattice,*
(iii) Glasser case lattice,??
(iv) Body centered cubic (BCC) lattice.?

In this paper, GF at the origin is expressed as a first-order differential equation for
one-dimensional lattice, which enables us to calculate GF at an arbitrary site using
the so-called recurrence formulas. On the other hand GF for the two-dimensional
lattice at an arbitrary site is obtained in a closed form, which contains a sum of
the complete elliptic integrals of the first and second kind. Finally, the phase shift,
scattering cross-section and DOS are evaluated numerically and analytically for
one- and two-impurities.

2. Green’s Function for One-Dimensional Lattice

The LGF for one-dimensional lattice is defined by!
1 [T Cosmx
G(m,t) = — —dx, 1
(m.?) 72 /0 t—Cosz )
where m is an integer and t is a parameter.
By executing the integration with respect to = in Eq. (1), we obtained the
following recurrence relation:

G'(m+1)—G'(m—1)=2mG(m), (2)
where G’(m) expresses the first derivative of G(m) with respect to t.
Taking the derivatives of Eq. (2) with respect to ¢, we obtained recurrence

relations involving higher derivatives of GF.
For m = 1 and 2, we obtained

G'(2) - G'(0) =2G(1), 3)
G'(3) —G'(1) = 4G(2). (4)
Noting the following recurrence relation,?0-24
Gm+1)=2tG(m) - G(m — 1) — 26,0, (5)
for m = 0 we find the well-known relation
G(1) =tG(0) —1. (6)
For m =1 and 2, we have?*2°
G(2) = 2tG(1) — G(0), (7)
G(3) =2tG(2) — G(1). (8)

Taking the derivative of both sides of Eq. (8) with respect to ¢, and making use of
Egs. (3), (4) and (6), we obtained the following expressions:

G(2) = (2t — 1)G(0) — 2t, (9)
G(3) = (413 — 3t)G(0) + (1 — 4t%). (10)
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Similarly, deriving both sides of Eq. (9) with respect to ¢, and using Egs. (3) and
(6), we obtained the following differential equation for G(0):

t

G'(0)+ =——=G(0)=0. 11
(0) + —G(0) (11)
Integrating the above equation we get
G(0,t) = ! (12)
VeE—T

So, the values of the one-dimensional LGF at an arbitrary site are known. The
diagonal LGF inside and outside the band for one-dimensional lattice is
_ El <1
(1 _ E2)1/27 ‘ | <
G'L,L,E) = ) : (13)
B |E| >1
Now, let us consider the tight-binding Hamiltonian (TBH) with the following two
cases:

(a) Single impurity atom

We consider here a TBH whose perfect periodicity is destroyed due to the presence
of the point defect at the L site. This situation can be thought of physically as
arising by substituting the host atom at the L-site by a foreign atom?® having a
level lying &’ higher than the common level of the host atoms (L), also, taking into
account the interaction between the point defect with the first nearest neighboring
host atom.

After some mathematical manipulations the single impurity GF can be written
ash2:

1
—_ (1+26)(E? —1)\/2 _ (¢/ + 2BE)’ B >1 "
S| s riaspa -

(14+26)(1 - E?)+ (¢/ + 28E)?

Therefore, the local DOS at site L has the form

(1+28)(1 - E*)'?

DOS(F) = . 15
(E) w[(1+20)(1 — E?) + (¢/ + 20E)?] (1)
The S-wave phase shift, &, is defined as'
0
tan dg = 1+21;nG (E) . (16)
—ReGOE)

e+ 20F



Mod. Phys. Lett. B 2007.21:139-154. Downloaded from www.worldscientific.com
by 212.138.88.100 on 03/10/13. For persona use only

142 J. H. Asad

Here, Re G°(E) refers to the real part of GF inside the band, &’ is a constant
depending on the strength of the impurity potential, and 3 is the interaction pa-
rameter (hopping integral). After some mathematical manipulations, we obtained
the S-wave shift as

e+ 26F
tan g = . 17
M= 28— B2 a7
The cross-section, o, is defined as!:
47 (¢/ +2BE)?[Im G°(E))? (18)
o= — .
P? [(1+20) — (= + 28E) Re GO(E)] + (¢ + 2BE)7[m GO (E)]?
Here, P refers to the electron momentum.
Therefore, the cross-section becomes
4 '+ 2BE)?
S (' +28E) (19)

p? (1+26)*(1 - E?) + (¢' + 20E)*

(b) Two impurity atoms

In the following we consider the case where two substitutional impurities are intro-
duced at two different sites (I and m) of the lattice. The GF at arbitrary site (n,n)

182

g1 G3(L,1)(1 - €,,,Go(m, m)) + &, G§(m, m)(1 — £,Go(1,1))
+2¢),/G3(1, m)

Gnn) = Goln W+ = GI )G - 2, Gmm) 500 m)

(20)
After some mathematical manipulations the GF can be written as
E?—1+¢e e(E-VE?-1)?QE—-1-2VE2-1)-1
G(l’l, 1’1) _ + Emel[( ) ( ) ] . (21)

[(E? —1)3(1 —2eer,)) — (] + &)y, — 2Bel, ) (B2 — 1)]

m

The S-wave phase shift, dg, is defined as

e Im Go(1,1)(1 — €, Re Go(m, m)) + &/, Im Go(m, m)(1 — £ Re Go(1,1))
+2¢],e]Re Go(l, m) Im G (1, m)

(1 — &, ReGo(1,1))(1 — £, Re Go(m, m)) — &’ &/ [Im Go(1,1) Im G (m, m) -
+ (Re Gp(1,m))? — (Im Gy (1, m))?]

tan dg =

(22)
Therefore, phase shift, dg, is
e +en, — 2, B

(1—2elel)(1— E2)1/2

m

tandog = (23)
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Then, the cross-section can be written as

4 1
(1 — &} Re Go(1,1))(1 — £}, Re Go(m,m)) — elne) (Im G (1,1) Im G (m, m)]2
2

+ (ReGo(1,m))? — (Im Gy(1,m))?)

e;Tm Go(I,1)(1 — &},, Re Go(m, m))
+ 2¢jem Re Go(1, m) Im Go(1, m)

+ & Im Go(m, m)(1 — ] Re Go(1, 1))

Therefore, the cross-section becomes

_ An? (e +¢el, — 2elel E)? (25)
P (1262 (1 - B?) + (] + &)y, — 260, )?

3. Green’s Function for Two-Dimensional Lattice

The LGF for two-dimensional lattice is defined by!

1 [T [ CosmxCosny
- 2
Gm.n, 1) 2 /0 /0 t — (Cosz + Cosy) dedy. (26)

where (m,n) are integers and ¢ is a parameter.
By executing a partial integration with respect to x in Eq. (26), we obtained
the following recurrence relation?’:

G'(m+1,n)—G'(m—1,n) =2mG(m,n), (27)

where G’(m,n) expresses the first derivative of G(m,n) with respect to ¢. Taking
derivatives of Eq. (27) with respect to ¢, we obtained recurrence relations involving
higher derivatives of the GF.

Putting (m,n) = (1,0), (1,1), and (2,0) in Eq. (27), respectively we obtained
the following relations:

G'(2,0) — G'(0,0) = 2G(1,0), (28)
G'(2,1) — G'(1,0) = 2G(1,1), (29)
G'(3,0) — G'(1,0) = 4G(2,0) (30)

For m = 0 we obtained®
2tG(0, 1) — 200, — 2G(1,n) — G(0,n+1) — G(0,n — 1) = 0. (31)
Insert n = 0 in Eq. (31) we find the well-known relation
G(1,0) = %[tG(0,0) ). (32)
For m # 0 we have

G(m+1,n) —2tG(m,n) + G(m —1,n) + G(m,n+ 1)+ G(m,n—1)=0. (33)
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Substituting (m,n) = (1,0), (1,1), and (2,0) in Eq. (33), respectively we obtained
the following relations:

G(1,1) = tG(1,0) — %G(0,0) - %0(2,0), (34)
G(2,1) = (t* = 1)G(1,0) — %G(0,0) - %G(Q,O), (35)
G(3,0) = (%t - t3>G(O,O) + 3tG(2,0) — (1 _22t2) . (36)

Now, by taking the derivative of both sides of Eq. (36) with respect to ¢, and using
Eqgs. (28)—(30), we obtained the following expressions:

G(2,0) = (4t — t3)G'(0,0) + G(0,0) — ¢, (37)
G(1,1) = (% - 1)G(0,0) — %(4 —t3))G'(0,0), (38)
G(2,1) = %(t?’ ~ 3)6(0,0) - §(4 ~2)6/(0,0) % (39)
G(3,0) = %(9 —22)G(0,0) + 3t2(4 — £2)G'(0,0) — (1 +24t2) . (40)

Again, taking the derivative of both sides of Eq. (37) with respect to ¢, and using
Eqgs. (28) and (32), we obtained the following differential equation for G(0, 0):

t(4 —t2)G"(0,0) + (4 — 3t*)G’(0,0) — tG(0,0) = 0, (41)

where G”(0,0) is the second derivative of G(0,0).
By using the following transformations G(0,0) = Y (x)/t and z = 4/t?> we

obtained the following differential equation?”29:
d*Y (z) dY(z) 1
z(1—x) e +(1— 2x)7 - ZY(x) =0. (42)

This is called the hypergeometric differential equation (Gauss’s differential equa-
tion). So, the solution is?®

v 155 bree) = (2)(2).

G(0,0,1) = %K(%) . (43)

Then,

By using Eq. (43) we can express G’(0,0) and G”(0,0) in terms of the complete
elliptic integrals of the first and second kind:
2 B(2/t)
T4t

G"(0,0,t) = ﬁ{E(%)[StQ—zﬂ —K(%)] (45)

G'(0,0,t) = (44)
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K (2/t) and E(2/t) are the complete elliptic integrals of the first and second kind,
respectively. So that, the two-dimensional LGF at an arbitrary site is obtained in
closed form, which contains a sum of the complete elliptic integrals of the first and
second kind.

The diagonal GF outside and inside the band becomes

2
GYL,L,E) = X . (46)
;[K(E/2)+iK(\/1—E2/4)]; |E| <2
Again, let us consider the following two cases:
(a) Single impurity atom

For a single substitutional impurity at site L the defect GF for the square lattice
11,2
ist

G°(L,L,E)
- K(E/2) : B| > 2
7(1 +28) — (¢! +2BE)K(E/2)
= [1(1428) — (¢’ + 28E)K(E/2)|K(E/2) + [im(1 + 206)
— (& + 28E)K(VT= B/DIK (VT= B/A) B
(1 +26) — (¢ + 28E)K(E/2)]2 + (¢ + 20E)2K>(y/1 - B2/4).
(47)
Therefore, the DOS is
DOS(E) = (1+28)K (/1 - B2/4) . B<2
[r(1+20) — (& + 2BE)K(E/2)P? + (¢ + 2BE)°K>(J/1 - B2/4) '
(48)
The S-wave phase shift, dg, is defined as
tan dg = Im GO(F) . (49)
1425 pecom)
e +20F
Therefore, phase shift, dg, is
K(\/1—-E2/4
tan dy = 1 _ﬁ 23 /4 (50)
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The cross-section, o, is defined as
_4n (' + 28E)[lm G°(B))?

P2 [(1+428) — (¢/ + 2BE)ReGO(E)]2 + (¢/ + 28FE)?[Im GO(K)]2
Therefore, the cross-section becomes

_dn (¢' + 2BE)2[K (/1 — E2/4)]? 52)
T P2 [n(142B) — (¢ + 2BE)K(E/2)]2 + (¢/ + 2BE)2[K (/1 — E2/4)2

g

(b) Two impurity atoms

We introduce here two substitutional impurities at two different sites of the lattice,
[ and m.
The GF at site (n,n) is

eiG(L1)(1 — 7,Go(m, m)) + 7, GF(m, m)(1 — £;Go(L,1))
+2¢1,,6,Gi(1, m)

Gn.n) = Goln.m) + = A )1~ o7, Gl m)) — 2, 2C30 m)

(53)

After some mathematical manipulations the GF can be written as

/_! 2
2K(2/E) {1—%}(2(2/@] + eme] [@—%} [2(E - 1)K(2/E) — 7E]
G(n, n) = ! o 2
(1 - 2¢/K(2/E) (1 _Zm K(2/E)) _rEeme FK(Q/E) - 1)]
Tk 4 T

(54)

The S-wave phase shift, dp, is defined as

g;Im Go(1,1)(1 — €/, Re Go(m, m)) + ¢/, Im Go(m, m)(1 — £; Re Go(1,1))
+2¢l 6] Re Go(l, m) Im G (1, m)

(1 —¢jReGo(L,])(1 — ], ReGo(m,m)) — &}, ¢/[Im Go(1,1) Im Go(m, m)
+ (Re Gp(1,m))? — (Im Gy (1, m))?]

tan dg =

(55)
Therefore, the phase shift, dg, is

! ! 1!
_ ElsmE o 25l€

[52 +el, — Wm(l — E2/4)K(E/2)}K(\/1 — E2/4)

tan dg =

’ ot e B K(E/2 .
e R A e e )
™

- %(1 ~ E2JA)K(\/1— E2/4)

(56)
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Then, the cross-section can be written as

4 1
o= — 5

P2 [ (1 = €] Re Go(L,1))(1 — el Re Go(m, m)) — elne) (Im Go(1,1)Im Go (m, m)
+ (ReGo(1,m))? — (Im Go(1,m))?)

+1
e;Tm Go(L,1)(1 — &},, Re Go(m, m)) + &}, Im Go(m, m)(1 — €] Re Gy (1,1))
+ 2e1em Re Go(1, m) Im Gy (1, m)
(57)
Therefore, the cross-section becomes
A 1
o » ele) elemF K(E/2) ?
7r(1— l4m'> — |e) 4+ em — L2 el (1 — E?/4) —=LZL | K(E/2)
™
- B2 K(\)1 - B2 /1)
™
+1
elemE  2ee,
{52 + e — = o - lﬂm (1- E2/4)K(E/2)} K(y/1— E2/4)
(58)
6—11

Finally, as mentioned in the introduction the LGF has many applications.
The method presented in this paper has an interesting application: it can be used
in calculating the resistance of an infinite network consisting of identical resistors,
where one can express the resistance between the origin and any lattice site in terms
of the LGF at the origin and its derivatives.1%:1%:16

4. Results and Discussion

First of all, we conclude that using this alternative method one can rewrite the
non-diagonal LGF at any lattice site in terms of the LGF at the origin and its
derivatives. These values are expressed in turn in terms of the elliptic integrals of
the first and second kind.

The results of the LGF for the one-dimensional lattice are shown in Figs. 1-7
and those of the two-dimensional lattice (square) are shown in Figs. 8-13. Figure 1
shows the DOS for the one-dimensional lattice with single impurity for 8 = &', with
different potential strengths ¢’ (—0.7,—0.3, 0.0, 0.3, and 0.7), for 8 = &’ = —0.7,
we have a discontinuity in the curve as shown in Fig. 1.

The phase shift, dg, is defined as the shift in the phase of the wave function
due to the presence of the impurity potential. Figure 2 displays dy for the one-
dimensional lattice with single impurity for 8 = &’ with different potential strengths
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Fig. 1. The density of states (DOS) for the one-dimensional lattice with single impurity for 8 = ¢’
with different potential strengths &’ (—0.7,—0.3, 0.0, 0.3, and 0.7).
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Fig. 2. The phase shift, dp, for the one-dimensional lattice with single impurity for 8 = &’ with
different potential strengths ¢’ (—0.7,—0.3, 0.0, 0.3, and 0.7).
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Fig. 3. The phase shift, dg, in three dimensions for the one-dimensional lattice with single impu-
rity for 8 = ¢’ with different potential strengths &’ varying between —1 and 1 (arbitrary units).
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e’ (-0.7,-0.3,0.0,0.3, and 0.7). For 8 = ¢’ = 0.0, dp vanishes as potential is turned
off (perfect lattice). The phase shift vanishes for all potentials values as E goes to
— 0.5 and is separated into two regions about £ = —0.5. Figure 3 shows the phase
shift, dp, in three dimensions for the one-dimensional lattice with single impurity
for different potential strengths ¢’ varying between —1 and 1 (arbitrary units).

The cross-section, o, is defined as the area an impurity atom presents to the
incident electron. Figure 4 shows the cross-section, o, for the one-dimensional lattice
with single impurity for § = &’ with different potential strengths &' (—0.7, —0.3,
0.0, 0.3, and 0.7). The peak value is a constant for all potential strengths. The
cross-section can be related to some physical quantities such as the conductivity in
metals.

Figure 5 shows the phase shift, dg, for the one-dimensional lattice with two
identical impurities for different potential strengths &' (—0.7,—0.3, 0.0, 0.3, and
0.7). The curves are mirror images of each other. Figure 6 shows the phase shift,
do, in three dimensions for the one-dimensional lattice with two identical impurities
for different potential strengths &’ varying between —1 and 1 (arbitrary units).

Figure 7 displays the cross-section, o, for the one-dimensional lattice with two
identical impurities for different potential strengths &' (—0.7,—0.3, 0.0, 0.3, and
0.7). The curves are mirror images of each other. For ¢’ = +0.7, o has a constant
value.

Figure 8 shows the DOS for the square lattice with single impurity for g = &’
with different potential strengths ¢’ (—0.7,—0.3, 0.0, 0.3, and 0.7). For ¢’ = —0.7,
DOS vanishes, and the peak value increases as €’ decreases.

Figure 9 displays the phase shift, dg, for the square lattice with single impurity
for 8 = ¢’ with different potential strengths &’ (—0.7,—0.3, 0.0, 0.3, and 0.7). For
¢’ = 0.0, dp vanishes as the potential is turned off (perfect lattice). We have a
discontinuity occurring in the curve as shown in Fig. 9. Figure 10 shows Jg in
three dimensions for the square lattice with single impurity for different potential
strengths &’ varying between —1 and 1 (arbitrary units), whereas the second axis
is the energy scale varying between — 2 and 2 as indicated in the formalism.

Figure 11 shows the cross-section, o, for the square lattice with single impurity
for 8 = ¢’ with different potential strengths ’. Figure 12 displays the phase shift, dq,
for the square lattice with two identical impurities for different potential strengths
¢’ (—=0.7,—0.3, 0.0, 0.3, and 0.7). The phase shift is always positive for all negative
potentials and vice versa.

Finally, Fig. 13 displays the cross-section, o, for the square lattice with two
identical impurities for different potential strengths &' (—0.7,—0.3, 0.0, 0.3, and
0.7). The peak value varies with the potential strength and reaches its maximum
value at ¢/ = 0.7; the peak value increases in the range between 0 < &’ < 1 as €’
increases and decreases otherwise.
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1 a7

Fig. 4. The cross-section, o, for the one-dimensional lattice with single impurity for 8 = &’ with
different potential strengths ¢’ (—0.7,—0.3, 0.0, 0.3, and 0.7).

Fig. 5. The phase shift, §p, for the one-dimensional lattice with two identical impurities for
different potential strengths ¢’ (—0.7,—0.3, 0.0, 0.3, and 0.7).
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Fig. 6. The phase shift, g, in three dimensions for the one-dimensional lattice with two identical
impurities for different potential strengths ¢’ varying between —1 and 1 (arbitrary units ).
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Fig. 7. The cross-section, o, for the one-dimensional lattice with two identical impurities for
different potential strengths ¢’ (—0.7,—0.3, 0.0, 0.3, and 0.7).

Do=s(E 3
1

Fig. 8. The density of states (DOS) for the square lattice with single impurity for 8 = ¢’ with
different potential strengths ¢’ (—0.7,—0.3, 0.0, 0.3, and 0.7).
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Fig. 9. The phase shift, dp, for the square lattice with single impurity for 3 = ¢’ with different
potential strengths &’ (—0.7, —0.3, 0.0, 0.3, and 0.7).
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Fig. 10. The phase shift, g, in three dimensions for the square lattice with single impurity for
B = &’ with different potential strengths ¢’ varying between —1 and 1 (arbitrary units ).
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Fig. 11. The cross-section, o, for the square lattice with single impurity for 3 = &’ with different
potential strengths &’ (—0.7,—0.3, 0.0, 0.3, and 0.7).

Fig. 12. The phase shift, dg, for the square lattice with two identical impurities for different
potential strengths &’ (—0.7,—0.3, 0.0, 0.3, and 0.7).
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Fig. 13. The cross-section, o, for the square lattice with two identical impurities for different
potential strengths &’ (—0.7,—0.3, 0.0, 0.3, and 0.7).
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